

Symposium II Program Review

Presented by:

COL Philip R. LoSchiavo
Product Manager
Petroleum and Water Systems (PAWS)

Agenda

- R&D
- Water Purification
- Distribution Systems
- Quality Surveillance
- IPDS
- Transitioned Items
- Summary

RSD

Next Generation Hydration System

- Develop an integrated "on the move" purification system:
 - Meets NBC standards
 - Meets applicable EPA standards
 - Interfaces w/ military gear
 - Treat 300 L of water before replacement.
 - 2.0 Liter capacity, < 1.0 Kg dry weight.</p>
 - Generate 1.0 L of potable drinking fluid (from seawater) in 15 minutes.
- Potential applications:
 - Fast & light backpacker market.
 - Hydration gear for military personnel.
 - Hydration gear for law enforcement personnel.
 - Disaster/Refugee relief

Highly-Efficient, Low-Power Water Purification Technologies

BACKGROUND/OBJECTIVES

- Current capabilities can produce sufficient quantities of potable water from any source <u>but</u>
 - Large demand for logistics support (fuel, filters, chemicals)
 - Relatively large, heavy systems create deployment challenge
- Develop and Demonstrate Innovative Highly-Efficient, Low-Power <u>Water Purification</u> Technology
- Reduce the Size and Weight of Water Producing Equipment by 25% While Reducing Operating Cost by 20%
- Reduce the Logistics Burden to Support Water Purification Equipment
- Enable the Development Easily Deployable Modular and Small Unit Water Purifiers

STATUS

- Conducted Applied Research and System Development to Transition Research Conducted by the Defense Advanced Research Project Agency (DARPA)
- Flow Through Capacitor Demonstrated 64% Energy Recovery
- Development and Testing of New Electrode Materials
- Flow Through Capacitor Demonstrator purified seawater and reduce conductivity of exhaust condensation by 92-99%
- Advanced Spacer Technology Demonstrated in 2.5" RO Elements and Under Going Testing
- Forward Osmosis Membrane Selection, Testing, and Development Underway

TECHNOLOGY

- Capacitive Deionization using energy recovery and advanced electrode materials
- Forward Osmosis and Enhanced Reverse Osmosis.

Water From Atmospheric Humidity

BACKGROUND/OBJECTIVES

- Water is Projected to be 40% of the daily sustainment requirement (106 tons) for the SBCT
- Development of a Distributed (Point of Use) Water Sustainment Capability
 - Will Augment Water Supplies and Potentially Extend Water Resupply From a Daily to Weekly Event
 - Increased Flexibility, Mobility, and Deployability Through the Elimination of Ties to Traditional Water Sources
 - •Address the critical challenge of water logistics distribution
- The Atmosphere and Humidity in Confined Operational Spaces (e.g. Vehicle Crew Compartments) is an Attractive Source of Water
- Water can be produced in dry environments where it is needed rather than at a source
- · Water Produced is largely free of contaminants
- Logistics of water Transportation are Eliminated

STATUS

- Conducted Applied Research and System Development to Transition Research Conducted by the Defense Advanced Research Project Agency (DARPA)
- Different Activated Carbon Surface Chemistries have been Fabricated and Tested
- Promising Activated Carbon Chemistries have been inserted into a novel system design incorporating energy recovery to demonstrate humidity concentration

TECHNOLOGY

 Advanced Surface Chemistry Modified Activated Carbons are extremely effective hydrophilic water vapor absorbers

Tasks	FY02	FY03	FY04	FY05	FY06
Breadboard v alidation of selected DARPA technologies in laboratory		TRL 4			
Breadboard demonstration of successful					
technologies in relevant environment			TRL		
technologies in relevant environment					
· Demonstration of platform mounted and					
stand alone prototy pes					TRL 6

Water From Exhaust

BACKGROUND/OBJECTIVES

- Water is Projected to be 40% of the daily sustainment requirement (106 stons) for the SBCT
- · Development of a Distributed (Point of Use) Water Sustainment Capability
 - Will Augment Water Supplies and Potentially Extend Water Resupply From a Daily to Weekly Event
 - Increased Flexibility, Mobility, and Deployability Through the Elimination of Ties to Traditional Water Sources
 - •Address the critical challenge of water logistics distribution
- Combustion of 1 Gallon of Fuel Produces ~1 Gallon of Water
- Water Collected is Contaminated with Combustion By-products
- Size & Weight of System Defines Feasibility
- Efficiency of Water Recovery
- Impact of engine performance and efficiency

STATUS

- Initiated Under a SBIR Program, Received DARPA Supplemental SBIR, transitioned to STO
- Counter Current HX Reduced Size by 40%
- Recovered up to 90% of Theoretical Maximum Water Available, <u>Consistently Recovered 50 to 60%</u>
- Demister Size Reduced by 83%
- <u>Purified Water Met</u> TB Med 577 and EPA <u>Drinking Water Quality</u> Standards
- Installation of New Catalytic Converter Reduced TOC Loading: Will <u>Reduce</u> Unknown Organics Concentration and <u>Filter Size</u>
- Developing Sensor (UV or Conductivity) to Determine When Filter Cartridge Expended

TECHNOLOGY

- Advanced Mesochannel Counter Current Heat Exchanger Reduces Size
- Purification Device Consisting of Novel Activated Carbon Fiber Combined with Ion Exchange Resins and Filtration

MILESTONE (FY)	01	02	03	04
Develop, fabricate & test water collection components Develop, fabricate & test water purification components Test combined subsystems in a relevant environment Design and develop integrated system and fabricate prototype	355500		6	2122-17

MIOX Electrolytic Disinfection

DESCRIPTION:

- Produces a mixed oxidant disinfectant that is more effective than chlorine or iodine
- Miniaturized MIOX technology fits in "pen" or "cap" form
- Removes or inactivates all microbial contaminants (bacteria, viruses, and protozoan cysts) to below drinking water standards
- Purifies 300 quarts using standard 123 lithium camera batteries
- Requires only salt & water no hazardous chemicals
- System weight 4 to 8 ounces depending on configuration

BENEFITS:

- Fast acting with no bad taste and outstanding performance
- Filters cannot remove viruses and chlorine/iodine cannot remove protozoan cysts – MIOX removes all microbial contaminants
- Shorter treatment time (10 minutes) than chlorine (30 minutes)
- Rugged, durable, reusable device that will purify 25 quarts between salt tablet replacement and 300 quarts before battery replacement

OPERATION:

- · Fill electrolytic cell with a tablespoon of water
 - Pour water into pen
 - Draw water into cap with miniature pump
- Replace cap and mix salt and water (shake pen)
- · Activate cell by turning on
- Wait until indicator (LED light or vibrator) signals disinfectant created about 10 to 30 seconds
- · Add oxidant to canteen
 - Pour pen
 - Pump out cap
- Wait 10 minutes for complete disinfection

STATUS:

- · Over 100 Pen prototypes manufactured and tested
 - Extensive laboratory testing on microbial and chemical contaminant removal validated performance passed EPA protocol for hand held purifiers
 - Successful Performance during AIR Force (AFOTEC) Technical Maturity assessment
- Prototype cap fabricated to work with outdoor industry standard nalgene container openings
- Marine Corps Marine Enhancement Program underway
- MIOX teaming with Cascade Designs to develop, manufacture, and market commercial cap meeting outdoor enthusiast and military requirements
- Expected in commercial market place in 12 months
- PM funded development of Large-scale version for 3,000 GPH ROWPU
- Undergoing testing at TARDEC for technology insertion

Rapidly Installed Fuel Transfer System (RIFTS)

- Rapidly emplaced, high volume bulk liquid transfer system capable of installation at a rate of 20 miles per day (30 MPD objective) using minimal personnel and equipment assets.
- A rapid deployable/re-deployable bulk liquid transfer capability that maintains pace with changing battlefield operations and requirements.
- Capability to replace bulk liquid transportation by truck; frees assets for retail petroleum re-supply and other CSS operations
- Capability for quick replacement of damaged in-theater pipeline infrastructure and flexible augmentation.
- Capability to move large volume of liquid (1 million GPD) to intermediate and head storage terminals using minimal manpower.
- Deployable over terrain not navigable by bulk fuel tankers.
- R&D but no production dollars

PETROLEUM TEST KIT (PTK)

- Suitcase size capability replaces both Aviation Fuel Contamination Test Kit (AFCTK) and Ground Fuels Test Kit (GFTK)
- Provides a Red/Amber/Green indication of diesel and turbine fuels
- R&D but no production dollars

Milestones	FY03	FY04	FY05	FY06	FY07	FY08	FY09
CTD Phase	△ MS A			∆MSB			
Deploy/Retrieve Demo Components Dev (Cont'd) Contract (Baseline Sys) DT/User System Demo						Ì	
SDD Phase/LRIP						MS C Prod Rel	
System Contract PVT/IOTE						TIMA	
Production Phase							

Milestones	FY03	FY04	FY05	FY06	FY07	FY08	FY09
Early User Evaluation	Δ						7
System Spec	Δ			U 1			
MS B Approval	Δ						
RFP Released	Δ						
SDD Contract Award	Δ						
DT/OT	- 5						
MS C Approval	-	Δ					
Production							

Water Purification Systems

1500 Tactical Water Purification System (TWPS)

- Produces Potable Water From All Water Sources Including NBC Contaminated Sites
 - Capable of Producing Potable Water from 60,000 mg/I TDS Source
- Two configurations

Army

- Basic Unit includes TWPS Plus Add-On Modules for Cold Weather, Chemical Cleaning Wastewater Storage, Supplemental Potable Water Storage and Distribution, Ocean Intake
- ISO Flat Rack Configured, 23,300 lbs. includes; TWPS mounted onto Flat-rack, Generator Set, and All Modules. Systems can be stacked 3 high for transport on ship.

Marine Corps

- · Basic Unit includes TWIPS only
- Skid System to Fit in 8'x8'x20' ISO Container, 10,000 lbs.

Z		The second	
Very III			
-	6		7

Milestones	FY03	FY04	FY05	FY06	FY07	FY08	FY09
Prod. Call ups		Δ	Δ	Δ	Δ	Δ	
PVT							
IOT&E							
MR / TC STd.		Λ					
FUE		Δ					

- Produces Potable Water From All Water Sources Including NBC Contaminated Sites
- Provides 75 GPH From Seawater and 125 GPH From Fresh Water Source
- Weighs Approx. 2000 Lbs. Without Ramp/Monster Hand Truck
- HMMWV and UH-60 Transportable
- Issued in AAL TRICON
- Set-Up by Four Soldiers, Operated by One

Milestones	FY03	FY04	FY05	FY06	FY07	FY08	FY09
Logistics Demo	Δ	er.					
PVT		7					
IOT&E	- 6						
Full-Rate Production IPR	10	Δ					
Production Call-Ups			Δ	Δ	Δ		
FUE			Δ	72.00	1000		

Distribution Systems

Unit Water Pod System (Camel)

- 900 Gallon Water Storage Capacity, Heat/Chill Capability, & M1095 (GFE) MTV Trailer
- → Heater/Chiller permits operation in hot and cold dimates
- Increased Water Capacity verses current systems Reduces Battlefield Re-Supply
- Retail dispensing, transport full & partial loads, Fully capable of standalone operation
- Meets ANSI/NSF Water Standards for Potable Water
- Inter-theater transported by highway, rail, air, & marine
- Transport in C-130 & larger aircraft
- External by helicopter & low-velocity air droppable
- Payload NBC Survivable

X	10		
		1	

Milestones	FY03	FY04	FY05	FY06	FY07	FY08	FY09		
MS B MDA Approved	10000000	100000		0.0000000000000000000000000000000000000		X102.000	- 00000		
Contract Award	Δ								
SDD Phase	Δ								
Government Test:									
POT									
POT Safety Release	4	5							
CT - Customer									
MS C MDA Production Review	1 2				1				
LRIP Phase	17	Δ							
Government Test:		Δ							
Logistics Demo	- 1		dea l		3	- 6			
PVT (FAT)									
PVT Safety Release			Δ			1,0			
IOT&E									
Full Rate Production Phase			Δ						
MS C/TC Standard			Δ	-					
FIIF			-	Λ.					

LHS Compatible Water Tank Rack (Hippo)

- → ISO Configured, HEMTT-LHS / PLS Compatible
- 2,000 Gal. Cap. per Tankrack, 4,000 Gal. With Truck/ Trailer Combination
- Insulated Tank & Heater Will Permit Operation in Cold Weather Climates (-25 degrees F)
- Replacement For Current SMFT
- Provides Water Farther Forward Than the SMFT and Permits Transfer of Partial Loads

Milestones	FY03	FY04	FY05	FY06	FY07	FY08	FY09
Prod. Contr. AWD				Δ			
Prod. Contr. Option AWD	3	Δ	Δ	Δ			
FAT							
IOT&E- Customer Test							
Full Rate Prod Decision/TC Std.		Δ			. 8		
Material Release		Δ					
First Unit Equipped		Δ					

Advanced Aviation Forward Area Refueling System (AAFARS)

- Provides Rapid, Simultaneous Refueling to Combat Aircraft Forward on the Battlefield
 - Refuels Four Aircraft Located 100' Apart at 55 GPM
 - Modular Configuration Four-Soldier Lift and Carry
 - System includes 12 500-gallon tanks
 - Issues in TRICON Containers
- Objective Force System
 - Aviation Detachment
 - FCS Interface

Milestones	FY03	FY04	FY05	FY06	FY07	FY08	FY09
Contract Award		\triangle	\triangle	\triangle	\triangle	\triangle	2
FAT Units Completed	A						
FAT Begins	A						
FAT Evaluation/Approval	A						
Production Build Begins	A						
Material Release/TC Std		Λ					
FUE							

ASSAULT HOSELINE SYSTEM (AHS)

- A Mobile Petroleum Transport System
 - 350 GPM Pump
 - 14,000′ of 4″ Hose
 - Hose Deployment/Retrieval Capability
 - Couplings, Clamps, Slings, Valves, Etc.
 - TRICON
- Operational Concept
 - Rapidly Moves Bulk Fuel Forward
 - Eliminates/Reduces Needs for Fuel Trucks
 - Can Connect to IPDS and FSSP

Milestones	FY03	FY04	FY05	FY06	FY07	FY08	FY09
Contract Award							8
FAT/PVT							
Material Release/ TC Std.		Δ				3	
FUE			1				
Production Call ups	A	Δ	Δ	Δ	Δ	\triangle	\triangle

FUEL SYSTEM SUPPLY POINT (FSSP)

- A Bulk Petroleum Storage/Issue Point
 - Five Standard Configurations
 - Storage Capacity: 30K Gal. to 800K Gal.
 - Collapsible, Fabric Storage Tanks, Pumps,
 - Filter Seps., Fittings and Hoses
 - Containerized: TRICON / 20' ISO
- Operational Concept
 - The Primary System for Receiving, Issuing, and Storing Bulk Petroleum on the Battlefield

			100				
Milestones	FY03	FY04	FY05	FY08	FY07	FY08	FY09
MS C/TC GEN	A						
CONTRACTAWARD		Constant Constant					
FIRST ARTICLE	133 (72)						
TEST & DEM							
LOG DEMO							
FULL RATE PROD							
MATERIEL RELEASE/TC STD							
FIRST UNIT EQUIP					73		
DEPLOYMENTS							

LHS Compatible Modular Fuel Farm (LMFF)

- → ISO Configured, HEMTT Load Handling System (LHS) Compatible
- 35,000 Gallon System Consists of Fourteen 2500-Gal Tankracks plus Two Pumpracks
- Pumprack Consists of a Pump,
 Filter-Separator and Hose Storage
- ◆ LMFF Increases Mobility, Capacity and Speed in Fuel Distribution
- ▶ LMFF Decreases Set-up and Take-Down Time
- NATO and PLS Flatrack Compatible
- Tankracks Also Suitable for Line Haul Operations

Milestones	FY03	FY04	FY05	FY06	FY07	FY08	FY09
MS C / TC LRIP	Δ						
Full Rate Prod Decision			Δ				
Prod. Contr. AWD		Δ					
Prod. Contr. Option AWD	12 13	700	Δ	Δ	Δ	Δ	Δ
FAT							
IOT&E- Customer Test							
MR / TC STd.			_				
First Unit Equipped	9 9		- 1	7			

Quality Surveillance

Petroleum Quality Analysis System (PQAS)

- One Per Division and Separate Brigades
- → PQAS Replaces Air Mobile Lab on 1:1 Basis
- Contains Computer Integrated Test and Data Acquisition Instruments for Fuel Analysis
- Contained in Lightweight Expandable Shelter Mounted on HMMWV
- Provides Capability for Quality Surveillance Tests on Diesel and Turbine Fuels by One 77L Soldier per 10 Hr. Shift.
- Digitization
 - Perform Necessary Calculations and Data Manipulations
 - Transmit Fuel Test Results
- Transportable by C-130 or Externally Transported by CH-47C/D

		100
		Lalina
	1 12	TO TO THE
-	1	150
-		2/

Milestones	F	Y03	3	FY	04	1	FY05		F	Y06		F	FY07		FY08		8		YO	09	
Prototypes						П	Т	П	Т	Т	П	Т	П		Т	П	П	Т	Т	T	
DT/OT			12			П				Т							\neg		Т	T	
MSC (STD)		A				П	Т	П		Т			П	Т	Т			Т	Т	T	
Prod Optn Awd		A								Т											
Materiel Release			1	1		П		П		Т	П				Т		П		Т		
FUE				Δ		П		П	\top	Т	П	\top		\neg	Т	П	T	\top	T	П	

MODULAR BASE PETROLEUM LABORATORY (MBPL)

- Operates At Theatre Level
- Performs Petroleum Tests Described by MIL-STD 3004
- Consists Of Two Semi-trailer Laboratories and Power Distribution Module

Milestones	FY03	FY04	FY05	FY06	FY07	FY08	FY09
ECP Contract Award	Δ						
TC Standard	Δ	(
MR	Δ				· .		
FUE	Δ						

IPDS

INLAND PETROLEUM DISTRIBUTION SYSTEM (IPDS)

Tactical Petroleum Terminal (TPT) Fuel Units and PLCAs

- A System for Rapid Deployment, General Support, Bulk-Fuel Storage, and Pipeline
- Worldwide Application to Provide Bulk Petroleum Fuels to Operating Forces Anywhere During Contingency Operations
- Major Groups of Equipment
 - Tactical Petroleum Terminal
 - · Bulk Petroleum Storage System, Fuel Unit
 - PLCA
 - Pipeline System
 - · Pipe set, 5 mile
 - · Pipeline pump station
 - · Pipeline support equipment
 - Special Purpose Equipment
 - Suspension bridge pipeline, 100ft, 200ft & 400ft
 - · Critical Gap crossing pipeline
 - · Pressure reducing station
 - · Pressure relief module

DEPLOYMENTS

Transitioned Items

Tank and Pump Unit (TPU)

31 January 2002

Forward Area Refueling Equipment (FARE)

4 October 2001

HEMTT Tanker Aviation Refueling System (HTARS)

4 June 2001

600 GPH Reverse Osmosis Water Purification Unit (ROWPU)

4 October 2001

3000 GPH Reverse Osmosis Water Purification Unit (ROWPU)

31 January 2002

Thank You For Your Support!

